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ABSTRACT 

Polycrystalline YAG fiber has recently attracted considerable attention for the role it could play as a fiber-laser gain 
media.  This primarily due to its large surface-to-volume ratio, high stimulated Brillouin scattering threshold, and its 
high thermal conductivity; all of which are superior to that of silica-glass fibers.  As a consequence, techniques which 
enable the fabrication of poly- and single-crystalline YAG fibers have recently been the focus of a number of efforts.  In 
this work we have endeavored to reduce the scattering loss of polycrystalline-YAG-core fibers while simultaneously 
demonstrating optical gain by enhancing our processing techniques using feedback from mechanical testing and through 
the development of a technique to encase doped YAG-core fibers with un-doped YAG claddings.  To this end we have 
recently fabricated fibers with both core and claddings made up of polycrystalline YAG and subsequently confirmed that 
they indeed guide light.  In this paper, the processes leading to the fabrication of these fibers will be discussed along with 
their characterization. 

Keywords: polycrystalline YAG, core-clad fiber, ceramic processing 
 

1. INTRODUCTION 

Due to the superior characteristics YAG possesses as a host gain media, which include its higher thermal conductivity 
and lower thermo-optic coefficients compared to glass, it has been considered an alternative host material for high-
energy fiber lasers.  Indeed, YAG-based fiber lasers would offer efficient operation at power levels beyond those 
achievable in current state-of-the-art silica-based fiber lasers if its losses can be minimized.1,2  To address this 
researchers have investigated creating both single-crystal and polycrystalline YAG fibers.  For example, Zhu et al. 
reported the preparation of single-crystal YAG fibers using laser heated pedestal growth (LHPG) which resulted in fiber 
diameters of 400 μm and optical losses around 1–2 dB/m in the 1–3 μm wavelength range.3  Single-crystal YAG fibers 
with diameters of ~ 30 μm have even been reported.4,5  These fibers were also prepared using LHPG and exhibited 
excellent optical qualities.  Although single-crystal YAG fibers are now available, robust cladding processes have yet to 
be developed for them.  While an number of cladding methods were investigated they still appear to be in their initial 
stages and lack the maturity required for the envisioned laser application.4,6  Indeed, glass can be used as a cladding on 
single-crystal fibers but its thermal conductivity is about ten times lower than that of crystalline YAG.  Therefore, it can 
only be used for characterization purposes as it negates the motivation to use YAG as a fiber media and is therefore not 
practical for actual applications.2,7  Applying ceramic coatings to fully dense fiber is also problematic due to constrained 
sintering conditions which result in cracks forming in the cladding.8  On the other hand, polycrystalline YAG fibers can 
be prepared with conventional ceramic processing, which involves a variety of processing steps including the formation 
of so-called “green fiber”, the creation of binder-removed fiber, and finally fully dense fiber.  In this study, green and 
binder-removed fibers were investigated for cladding studies using dip coating.   

The processing steps used to make the polycrystalline YAG fibers studied in this work as well as the experimental 
characterization of the optical propagation losses in the resulting fibers have already been reported.9-12  These losses 
were measured by injecting a 1480-nm fiber-coupled laser into these fibers which were cladded with 3 μm of Schott 
SF57 glass.  Obviously the loss of these fibers, measured to be  50 1/m, needs to be significantly lowered to facilitate 
any practical application.  Following this initial work it was discovered that these fibers all contained second-phase 
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inclusions which likely lead to excess scattering loss.  It was determined the cladding thickness was too thin to optimally 
confine the light within the fibers, and the refractive index difference between the YAG core and the glass cladding was 
too large at the characterization wavelength used.  As a consequence of these findings, we have recently focused on 
removing the second-phase inclusions and on developing a process to apply an un-doped YAG cladding to a doped 
polycrystalline YAG fiber in order to optimize the refractive index difference between core and cladding.  In this study 
we report on refined processing techniques able to routinely realize polycrystalline YAG fibers without second-phase 
inclusions (to date we have only made core-only fibers of this type).  These findings are accompanied by the results of 
two types of older fibers which still possessed some degree of second-phase inclusions: YAG core-only and YAG core-
clad geometries.       

2. METHODOLOGY 
2.1 Processing of green YAG fibers  

As previously described (in Refs. 4–7) Yb-doped YAG powders were obtained from Nanocerox (Ann Arbor, MI).  The 
as-received powder was subsequently ball-milled and classified to remove agglomerates and contamination from the 
milling media.  Binder and plasticizer were mixed with the Yb-doped YAG powder and the mixture was extruded 
through a 50-μm custom-made nozzle at pressures 3000–5000 psi.  The fibers were then dried at room temperature for 

 8 hours before any future process steps were taken. 

 

2.2 Cladding and sintering of YAG green fibers 

An un-doped YAG slurry was subsequently prepared (as described above) and the Yb-doped fibers were dip coated in 
this slurry multiple times to form the YAG cladding.  After each dip coating, the coated fiber was dried at 120°C.  
Organics in the cladded green fiber were removed during slow ramping up to 600°C and the sintering was carried out 
under a variety of conditions.  

 
2.3 Characterization of polycrystalline YAG fibers 

To further investigate the composition of these fibers they were mounted, polished, and coated with carbon as a 
conductive layer for scanning electron microscopy (SEM, Quanta ESEM, FEI).  Then the back-scattered electron mode 
of our SEM was used to analyze fibers for the presence of second-phase inclusions. In addition, focused ion beam (FIB, 
Nova, FEI) was used to prepare foils for energy dispersive x-ray spectroscopy (EDS) analysis via TEM (CM 200, 
Philips) to perform chemical analysis on the second-phase inclusions and YAG matrix.  Optical scattering losses of these 
fibers were also measured using the approach detailed in Ref. 7. 
 

3. RESULTS AND DISCUSSION 
3.1 Second-phase observation and removal 

While our earlier fibers guided light, the best loss coefficient was measured to be ~50 1/m.  During the analysis of these 
fibers, however, it was found that they contained second-phase inclusions [as shown in Fig. 1 (a)].  This implies the loss 
of the fibers would improve if the second-phase inclusions could be removed.                  

The EDS spectra shown in Fig. 1(c) make it clear that the second-phase inclusions are Si rich and Al deficient.  While it 
is still unclear what causes the formation of the second-phase inclusions, they are believed to increase the scattering 
losses of these fibers.  After a number of experiments where the sintering conditions were changed, we found conditions 
which allowed us to create polycrystalline YAG fibers without inclusions; the microstructure of such a fiber is shown in 
Fig. 1(d).  Scattering loss measurements for this fiber will be compared with those of earlier fibers in the near future.  
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Fig. 1. SEM micrographs of cross-sectioned YAG fiber (a) and cross-sectioned foil (b) showing second-phase 
inclusions.  EDS spectra (c) collected via TEM on matrix YAG and second-phase inclusions numbered in (b).  
SEM micrograph (d) of a polished section of YAG fiber without second-phase inclusions. 

 

3.2 Applying un-doped polycrystalline YAG cladding to doped polycrystalline YAG fibers 

Although the preparation of both single- and polycrystalline YAG fibers has been reported, robust cladding processes on 
those fibers have not yet been fully developed.  Glass cladding was previously used on polycrystalline YAG fibers 
because it can be readily processed, however, surface-tension issues limited the thickness that could be reliably achieved.  
Moreover, the glass cladding was only applied for characterization purposes; it would limit the benefits of an all-YAG 
fiber in actual applications (e.g. its advantageous thermal properties).  Since the fibers in this study were prepared with 
ceramic processing, they can easily be coated with an un-doped YAG slurry.  Here dip coating was attempted on both 

(d)(c) 

(a) (b)

(a) (b)
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green and binder-removed fibers.  However, because the organic system of the cladding slurry was similar to that of the 
extrusion mix, the binder in the green fiber dissolved when it came in contact with the slurry and further dip coating was 
not possible.  As a result the achievable cladding thickness was limited.  Nevertheless, dip coating the binder-removed 
fiber worked well and all cladded fibers in this study were prepared using this technique.  Figure 2 shows the evolution 
of dip coating processes and the resulting fiber cross sections.   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

   
Fig.2. SEM micrographs of cross-sections of the polycrystalline YAG core-clad fibers: The evolution of our dip 
coating process can be seen by noting that the circularity of the cross sections and sintering temperatures 
improve from (a) to (d). 

 

As shown in Fig. 2, Yb-doped cores look brighter than the surrounding cladding because the cores include a dopant with 
a higher atomic number.  This generates brighter contrast under the back-scattered electron mode of the SEM.  Initial 
characterizations were performed on the polycrystalline YAG core-clad fiber which was fabricated with the sintering 
temperature used for Fig. 2(c) followed by the dip coating method employed in Fig. 2(d).  These characterizations are 
discussed in sections 3.3 and 3.4.  
 

3.3 Preliminary characterization of the polycrystalline YAG core-clad fiber 

A roughly 2.5-inch long polycrystalline YAG core-clad fiber with a ~ 30-μm diameter whose microstructure is shown in 
Fig. 3 (a) was fabricated for characterization.  The core region of this fiber appears to have a bright contrast and fills the 
majority of the cross-sectional area while the dark rim around the “circle” (barely visible in the figure) is the un-doped 

(a) 

(d)(c) 

(b)
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YAG cladding.  Ideally, the cladding should be thicker than that shown in Fig. 3(a).  This has motivated us to explore 
other ceramic processes for the application of the cladding including co-extrusion and tape casting.  We have also 
developed a new sintering process to prevent the formation of second-phase inclusions in the fiber (as discussed in 
section 3.1); however, the fiber in Fig. 3 was prepared with our original method and therefore still contains a small 
quantity of second-phase inclusions.  Before performing optical loss measurements, the YAG fiber was butt-coupled to a 
SMF-28 delivery fiber where the alignment was optimized using a 632-nm fiber-coupled semiconductor laser.  Figure 
3(b) and (c) show the polycrystalline YAG fiber aligned to the SMF-28 fiber using the 632-nm laser.  Figure 4 (a) shows 
the entire fiber guiding (and scattering) the 632-nm laser light.  Figure 4(b) shows a well-prepared part of the fiber while 
the images in (b) and (c) reveal regions that include kinks.  It was observed that the 632-nm laser light passes through the 
regions shown in (a) and (b) but that severe kinks, like the one shown in Fig. 4(d), ruin the wave-guiding abilities of 
these fibers.  The kinks, such as the one highlighted by the arrow in Fig. 4(a), result in significant scattering as one 
would expect.  

 
 
 
 
 
 
 
 
 
 

Fig. 3. SEM micrograph of the cross-section of polycrystalline YAG core-clad fiber (a) and alignment of the 
YAG fiber with SMF-28 delivery fiber (b) and (c). 

 

 
 
 
 
 
 
 
 
 
 
 

Fig.4. 2.5-inch polycrystalline YAG core-clad fiber scattering and guiding 632-nm laser light (a).   Optical 
micrographs of a well prepared region of this fiber (b) and regions exhibiting kinks (c) and (d).  The laser light 
stops being guided in (a) at the location identified by the arrow where the kink shown in (d) exists. 

 

(a) (c) (b)

SMF-28Polycrystalline YAG 
core-clad fiber 

(a) (d)(c)(b)
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3.4 Scattering loss of polycrystalline YAG core-clad fiber and Yb excitation 

Spatially resolved optical scattering collected from the polycrystalline YAG core-clad fiber is shown in Figs. 5–7 and 
was measured using the same general setup as that described in Ref. 7.  Nevertheless, a subtle modification to our system 
was made to facilitate these measurements because these fibers were doped with Yb.  Specifically, in this work a 
SMF-28 fiber-based wavelength-division multiplexing (WDM) coupler was used to spectrally resolve our 
measurements.  While the WDM coupler was used for its expediency, it required our scanning “probe” fiber be switched 
from a multi-mode to a single-mode fiber.  This greatly decreased the solid angle over which scattered light is collected 
and, while this could be used to improve our spatial resolution, it also greatly reduced the power levels incident in our 
integrating sphere.  As a consequence, the signal-to-noise ratio for the data presented below is not as high as that 
obtained in our previous measurements (Ref. 7).  

 
 

Fig.5. Optical power detected in an integrating sphere using a cleaved SFM-28 fiber as a probe tip and a 1480-
nm pump laser. 

  

 

 
Fig. 6. Optical power detected in an integrating sphere using a cleaved SMF-28 fiber as a probe tip in 
conjunction with a 980/1030-nm WDM coupler to provide spectral resolution.  In this case the 980-nm output 
port was used.  (The fiber tested here is the same as that investigated in Fig. 5 however the fiber was re-aligned 
which shifted its location from ~ 6.2 to 5.5 mm) 
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Fig. 7. Optical power detected in an integrating sphere using a cleaved SMF-28 fiber as a probe tip in 
conjunction with a 980/1030-nm WDM coupler to provide spectral resolution.  In this case the 1030-nm output 
port was used. 

 

While the optical losses measured for this initial fiber were significantly larger than those found in previous work 
(50 1/m) we believe this to be attributable to our initial YAG cladding dimensions which were far too thin to ensure a 
negligible optical field at the cladding–air interface.  Still, despite the high losses measured at 1480 nm, we measured a 
considerably higher loss at 980 nm.  While scattering-induced losses should increase at lower wavelengths the 
discrepancy between the losses at these two wavelengths is far more extreme that than observed in previous work.7  
Clearly the large increase in loss at 980 nm is due to the Yb doping of the core of these fibers which absorbs a significant 
amount of the 980-nm pump light.  Figure 7 shows the combination of spontaneous emission (SE) and scattered 
amplified spontaneous emission (ASE) which is subsequently scattered out of this fiber in the ~1030–1050 nm regime 
identifying that part of this fiber is inverted.   

  

4. CONCLUSIONS 
Polycrystalline YAG core-clad fibers were fabricated and found to guide light at wavelengths separated by 500 nm. The 
scattering loss coefficient of the fiber was measured to be below 70 1/m at 1480 nm and while this value is higher than 
that of our previous fibers (whose loss coefficient was ~40 1/m) these fibers were doped.  The excess loss has also been 
attributed to excess scattering at the cladding-air interface and the lingering presence of second-phase inclusions which 
we only recently managed to suppress.  New fibers with thicker claddings and a lack of second-phase inclusions will be 
optically tested in the near future.  
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